
1

C++ Super Glue for
Anti-malware Applications

WHITE PAPER

BENNY CZARNY

2

The growing number of anti-malware applications present interoperability and security management issues to

IT professionals and programmers seeking a common language to classify and manage anti-malware features.

Integrators conduct research for anti-malware application interfaces; this research is usually time consuming

and includes looking into dll header files, Command Line interface (CLI), C++ or COM API (if available) as well as

other techniques, such as modifying registry keys, files and process monitoring.

This research is successful when the number of managed applications is limited to a few, but becomes

an engineering challenge as the quantity of applications to be managed increases. The challenges and

opportunities surrounding application management will be addressed during this session.

This session will begin by identifying integration challenges and will then introduce the concept of an

object-oriented “universal language” which serves as the basis for an interoperability technology. I will then

demonstrate how several different security vendors in the field of remote access, network access control

and filtering technologies, successfully implemented this language. The session will continue by introducing

an “object-oriented analysis” approach for anti-malware application management. I will identify attributes

(properties) and operations (methods) associated with anti-malware applications and will discuss the

advantages of object-oriented architecture and other techniques of solving issues related to anti-malware

application management.

Abstract

SECTION 0.0

3

In its survey of 616 US IT security professionals, The Computer Security Institute found that 65% of companies

represented had experienced a virus attack. Given the consistently expanding number of recorded malware and

malicious threats, many vendors have stepped into the security space, offering anti-malware,

anti-phishing, anti-spyware personal firewall and other security technologies seeking to deliver protection

against these threats. The amount of security solutions and applications is in the thousands; every year vendors

release additional solutions designed to provide faster and better protection against evolving threats, increase

product usability, and support additional platforms.

The increasing quantity of security vendors and applications introduce new challenges to security vendors and

system integrators tasked to classify, identify, manage and check currency of anti-malware applications --

whether the task is associated with an integration project to solve needs for specific customers, or building

a new security solution that needs to interoperate with one or many anti-malware applications.

The Classification and Identity Challenges include a verification of anti-malware application binaries, especially

when they could be compromised by malicious code. Malware can do that by creating binaries and executables

with identical names, by adding similar registry keys or by reporting to the operating system.

These challenges extend with the existence of rogue applications – a rogue application is marketed as an

anti-malware application. It reports to the operating system as an anti-malware application although it does

not provide proven, reliable anti-malware protection. It may use unfair, deceptive, high pressure sales tactics

to induce gullible, confused users to purchase.

The Manageability Challenge is a common programmatic way to control common features of anti-malware

applications. Although each anti-malware vendor may offer similar functionalities such as scan or update,

managing these functionalities programmatically differs from one solution to the other. Different anti-malware

applications have different interfaces. Some anti-malware applications have an API program, others may have

a well-documented CLI, but the interfaces are not consistent across vendors. For example – one vendor could

expose definition update functionality, but others may not. Any integration attempt also faces interface quality

aspects across the vendor spectrum as interfaces may break.

The Anti-malware Application Chaos

SECTION 1.0

4

The Currency Checking Challenge - Many anti-malware applications are signature-based. This means that

in order to keep the anti-malware application effective, it has to be current with the latest definition update.

Many anti-malware vendors provide an update mechanism for their anti-malware engines. Vendor update

mechanisms follow different security schedules such as hourly, daily, weekly or even monthly updates.

This increases the complexity of currency checking because of the challenge of figuring out every update

mechanism schedule and comparing it to the signature files on the local machines.

5

Object-Oriented Programming (OOP) is a great way to solve the anti-malware integration challenge. OOP is more

than just a programming concept. It is a way of thinking about applications. It is learning to think of applications

not as procedures, but as objects. Objects that do things (methods), and have attributes (properties), and are

therefore logically grouped by the way they appear and behave.

If we’ll perform an Object-Oriented design and analysis for the anti-malware application, the anti-malware

application could be considered as the object, that object’s methods could include: scanning files, scanning

memory, triggering an update etc. The properties could include the name, version, language and type.

Abstraction is a powerful feature provided by object-oriented languages. The concept of abstraction relates

to the idea of hiding data that is not needed for presentation, present only the information. The main idea

behind data abstraction is to give a clear separation between properties of data type and the associated

implementation details. This could be ideal to manage specific security application features as by hiding data

or abstracting details that are not needed for presentation. For example: low level operation of an anti-malware

could be hidden -- such as open or close a file while relevant logically methods could be exposed such as

anti-malware.scan(); or anti-malware.update(). Other benefits of this abstraction is enhanced security -

abstraction gives access to data or details that are needed by users and hides the implementation details,

providing enhanced security for application. For example the method antimalware.clean(file) could be exposed

while method like antimalware.cleanPrepare() or antimalware.cleanVerify() could be hidden.

Another feature of object-oriented programming is inheritance. Inheritance allows an object to have the same

behavior as another object and extend or tailor that behavior to provide a special actions or special actions for

specific needs.

Let’s use the anti-malware application as an example. Both anti-malware applications “John” and “anti-malware

Doe” objects have similar methods such as scanning a file and similar properties such as vendors and version

names.

Rather than put these methods and properties in both of these objects, the method could be placed in a new

object called object Anti-malware. Both anti-malware John and anti-malware Doe become child objects of the

object Anti-malware, and both inherit the object Anti-malware’s behavior.

Object-Oriented Anti-malware
Integrated Language

SECTION 2.0

6

}JohnAnti-malware and DoeAnti-malware inherit CAnti-malware Object methods

CSecuritySuite inherits Anti-malware Object and adds additional Anti-phishing functions

Example of Pseudo Code Which
Demonstrates Inheritance of
Anti-malware Applications

SECTION 3.0

Class CAnti-malware {
 Public:
 string name;
 version ver;
 date expirationdate;
 bool filesystem_protection_state;
 bool scanfile(CFile C) // code to clean file
 }
};

class JohnAnti-malware : public CAnti-malware
};
class DoeAnti-malware : public CAnti-malware
};

class CSecuritySuite : public CAnti-malware{
 private:
 bool anti-phishing_state ; // identifies whether the
anti-phishing is on
 }
};

The code to use this OOP could look like:

Begin program () {

JohnAnti-malware JohnAM;
DoeAnti-malware DoeAM;
CSecuritySuite ProAM;

display JohnAM.name();
display JohnAM.expirationdate();
display DoeAM.name();
display DoeAM. expirationdate();
display ProAM.name();
display ProAM. expirationdate ();

exit()

7

1. Remote Access

Remote access vendors are commonly challenged to assess the security health of endpoints which are the most

vulnerable element in the network. The security health check includes verifying if the anti-malware application

is installed, if it is authentic, if the security anti-malware file system feature is turned on, if the anti-malware

application is up to date and, if the system was recently scanned and no malware were found.

Following object-oriented design principles, the final code could be as simple as:

Two Cases of Object-Oriented
Anti-malware Integration Language

SECTION 4.0

Class CAnti-malware {
 Public:
 string name;
 version ver;
 bool isinstalled;
 date lastscantime;
 bool filesystem_protection_state;
 DefenitionFile def;
 Bool ishealthy(); // add code to define if the anti-malware
is authentic
 Bool isauthentic(); // add code to define health state
 bool scanfile(CFile C) // code to clean file
 }

Begin program () {

The OOP code could be as simple as:

 CAnti-malware DoeAM;
 display DoeAM.ishealthy();
 display DoeAM.isauthentic();

exit ()

};

8

2. Multi-scanning Solution

Problems with a single anti-malware engine approach stem from having only one system in place to identify

threats. Although the signature files used by an engine to identify malware are generally updated several times

a day, they are often released after a new malware has already hit and damage has been done. Even if an

engine is 99.9 percent effective, it only takes one infection to inflict damage. Therefore, integrators and solution

builders are seeking to implement a layered anti-malware approach, using a single, centrally managed solution

that eliminates the need to evaluate different anti-malware scan engines and manage different vendors.

The following example demonstrates a simple multi-scanning solution:

int main() {

The OOP code could be as simple as:

 CAnti-malware JohnAM;
 CAnti-malware DoeAM;
 CFile file;

 JohnAM.scanfile(file);

 DoeAM.scanfile(file);

};

9

Object-oriented programming could provide an elegant easy to use solution to create a programmatic

management layer to manage anti-malware and potentially other security solutions.

http://www.spywarewarrior.com/rogue_anti-spyware.htm

http://www.opswat.com/

Conclusion

References

SECTION 5.0

SECTION 6.0

10

OPSWAT is a global cyber security company that has provided security solutions for enterprises since 2002.

Trusted by over 1,000 organizations worldwide, OPSWAT prevents data breaches and malware infections by

eliminating security risks from data and devices coming into an organization. MetaDefender by OPSWAT is a

powerful advanced threat detection and prevention platform, offering data sanitization (CDR), vulnerability

assessment, multi-scanning, heuristics, big data, and additional threat protection technologies for a solution

that is not solely based on detection. MetaAccess by OPSWAT is a cloud-based access control solution that

helps enforce endpoint compliance and prevents contamination of cloud applications by blocking potentially

compromised or noncompliant devices from accessing SaaS applications.

To learn more about OPSWAT’s innovative and unique solutions, please visit http://www.opswat.com.

About OPSWAT

SECTION 7.0

11© 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetaDefender®, MetaAccess™, Trust No File™ and the OPSWAT logo are trademarks of OPSWAT, Inc.

